# NEAMS Reactor Physics HTGR/FHR Capabilities

Matthew Jessee

Javier Ortensi

Hansol Park

May 8, 2025



## NEAMS Reactor Physics technical area develops and deploys codes for modeling neutral particle transport and nuclide depletion/decay

- Neutral particle transport: Interaction of neutrons/gammas with reactor materials
- Transmutation: Time evolution of isotope inventories due to irradiation and decay; and decay-induced neutron and gamma source
- Coupled Transport and Transmutation: Time evolution of flux (power), isotopes, and decay source
  - Steady-state operation (days, months, years)
  - Transient scenarios (seconds, hours, days)
  - Spent fuel management (years)
- Changes in geometry, temperature, and density influence change in reactor physics
- Strategically prioritize, coordinate, and develop 3 codes: Griffin, Shift, and MPACT

- MPACT is the direct whole-core reactor physics code integrated into VERA for high-fidelity light water reactor simulation
- Griffin is a flexible MOOSE-based reactor physics application for multiphysics simulations of advanced reactor designs
  - Range of mesh-based MG deterministic solvers
  - On-the-fly cross section processing is integrated for both fast and thermal systems, including TRISO based systems
  - Depletion/decay using built-in depletion solver
  - Transient analysis using point kinetics, improved quasi static method, and spatial kinetics.
  - MOOSE framework enables ease-of-coupling to other MOOSE-based codes
- Shift is a Monte Carlo radiation transport code designed to scale from supercomputers to laptops.
  - Continuous-energy nuclear data on exact geometry (CSG)
  - State-of-the-art methods for eigenvalue, shielding, depletion, and sensitivity/uncertainty on CPU/GPU systems
  - Shift provides MG cross sections for subsequent multiphysics simulations with Griffin for all non-LWR reactor systems



## Technology Specific Needs for Pebble Bed Reactors



## Technology Specific Needs for HTRs



## Technology Specific Needs for both

- Gamma heating of reflectors and steel components
- Fluence calculation in structures and components
- Shielding and detector response (source calculations)



Harris power plant adjoint flux for ex-core detector response from Shift



Shift WBN1 vessel fluence and normalized core flux over 15 cycles



## Griffin Capabilities for PBRs and HTRs

Flexible high-performance radiation transport code designed to scale from laptops to supercomputers







## Shift Capabilities for PBRs and HTRs





## Top RD&D Priorities - Griffin

- Griffin broad group cross section preparation FY25 (NO, AOO, DBA, BDBA)
  - leakage correction
  - neutron self-shielded XS for for HTRs
  - neutron-gamma self-shielded XS for all PBRs and HTRs
- Deep penetration problems and detector response (NO, AOO)
  - Solver improvements for SN + CMFD acceleration
  - Adjoint flux generation for Shift (shielding)
- Improvements to low order methods (SPH, GET) FY25 (AOO, DBA, BDBA)
  - Improve SPH convergence with reflector zones
  - Determine SPH correction effects on the reactor kinetics solutions

NO – Normal Operation AOO – Anticipated Oper. Occur. DBA – Design Basis Accident BDBA – Beyond DBA



## Top RD&D Priorities - Shift

- Cross section preparation (NO, AOO, DBA, BDBA)
  - Integrate microscopic cross section generation with overlay CSG tally
  - Enable more accurate scattering matrix moments
- Generate a MOOSE-based workflow for FW-CADIS with Shift (NO, AOO)
  - Enable Griffin-Shift calculations for detector response and deep penetration problems
  - Compute weight windows from Griffin generated adjoint fluxes (biasing parameters)
- Shift multiphysics (NO, AOO, DBA, BDBA)

## Online Cross Section Generation Capability of Griffin

## Introduction to Self-Shielding API (SSAPI)

#### Purpose

 To perform fully heterogeneous transport calculation for flux solution without needing to generate cross sections by a user

To generate cross sections in a downstream code for two-step approach

#### Objective

 Determine region-dependent self-shielded multigroup cross sections by performing self-shielding calculation.

#### Method

- TRISO Dancoff factor for region-dependent shadowing effect
- Two-stage on-the-fly slowing down method

Shadowing effect in pin 2 < pin 15
= less shielded spectrum in pin 2 than pin 15





## SSAPI Capabilities

#### **Prismatic-type Fuel Rod Design**



TRISO particle



- TRISO double-heterogeneity treatment
- High temperature treatment (resonance up-scattering)
- On-the-fly Doppler broadening
- Multiphysics coupling (Doppler, coolant density)
- Macro- and micro-cross section edits for two-step procedure
- Support pebble-bed cross section generation with depletion
- Support shell-type fuel (HTTR annular compact, FHR pebble)

#### **Pebble-bed Design**



#### Verification Efforts

- Accuracy (FY21 24 Accomplishments)
  - Griffin uses the most advanced resonance self-shielding theory in terms of accuracy.
  - Verified against Serpent for VHTR, HTTR, EMPIRE, gas- and salt-cooled PBRs.
    - Generally eigenvalue error < 200 pcm, power error < 2%.
    - Temperature reactivity coefficients < 5%
- Performance (FY24 Accomplishment)
  - Optimization + New method
  - Total speedup: > 300x
  - Pebble-wise (fuel rod-wise) self-shielding calc.
     ~ 0.4 seconds per processor
  - Supported by MPI parallelization

#### No Loss of Accuracy in Absorption Reaction Rate





## Coupled SSAPI, Transport, and Pebble Depletion





## Multi-pebble Model

- Issue in Average Pebble Model used by Legacy Tools
  - Composition averaging leads to wrong self-shielding effect.
  - Major impact: Overestimation of <sup>240</sup>Pu capture up to +15%
    - → Underestimation of eigenvalue up to -1.5%.



- Implementation of Multi-pebble Model in Griffin
  - Pebble interactions are considered by <u>coupled balance equations</u> in different pebbles and

coolant based on collision probability.

 Confirmed excellent agreement against Serpent results.





## Streaming Effect for Gas-cooled PBR

- Presence of 40% Gas Region in a Pebble-bed
  - Affects the mean neutron migration area.
  - Conventional homogenization underestimates diffusion coefficient.
    - Effect: power tilt and eigenvalue overestimation (up to a few %)
- P. Benoist method for better diffusion coefficient
  - Works for both transport and Diffusion calculations.
- Good agreement in  $k_{\rm eff}$  and power distribution  $k_{\rm eff}$  error (pcm) of Griffin w.r.t. Serpent

| XS Generation<br>Code | Diffusion        |               |                | Transport (P1)   |               |                |
|-----------------------|------------------|---------------|----------------|------------------|---------------|----------------|
|                       | No Str.<br>Corr. | Str.<br>Corr. | Str.<br>Effect | No Str.<br>Corr. | Str.<br>Corr. | Str.<br>Effect |
| Serpent XS 12G        | +486             | +125          | <u>-361</u>    | -                | -             | -              |
| SSAPI                 | +285             | +15           | <u>-269</u>    | +337             | +8            | <u>-329</u>    |



$$\overline{D}_g^{\text{Corr}} = \frac{1}{3} \frac{\Sigma_k V_k \phi_g^k}{\sum_k V_k \phi_g^k} = \frac{1}{3\overline{\Sigma}_{\text{tr},g}^{\text{Corr}}}$$



## Region Dependent Pebble-bed Porosity

- Region-wise Pebble Packing
  - Less packed near the wall by -8% and more packed in the inner side by +1.2% than nominal average
- Error Caused by Using Core-average Porosity
  - Power error by the same error in pebble porosity
- Measure in Griffin
  - User provides a txt file that contains pebble locations.
  - Griffin calculates region-dependent porosity.
- Excellent agreement of power distribution in the final solution (less than 2%).





#### Conclusion

- Developed an advanced on-the-fly cross section generation methods for GCR/FHR.
- Biggest advantage
  - Elimination of user's burden to generate cross sections, particularly more valuable for PBR depletion calculations.
  - No interpolation error from tabulation approach, especially for complicated Multiphysics scenarios.
- Future works
  - On-the-fly leakage correction for reducing computational burden without loss of accuracy.
  - Support pebble-bed running-in calculation
  - Coupled neutron and gamma transport
  - Two-step process for core calculation with homogenized assembly
  - Depletion for prismatic-type reactors





## Office of