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• Neutral particle transport: Interaction of 
neutrons/gammas with reactor materials

• Transmutation: Time evolution of isotope 
inventories due to irradiation and 
decay; and decay-induced neutron and 
gamma source

• Coupled Transport and 
Transmutation: Time evolution of flux 
(power), isotopes, and decay source
• Steady-state operation (days, months, years)
• Transient scenarios (seconds, hours, days)
• Spent fuel management (years)

• Changes in geometry, temperature, and 
density influence change in reactor physics

• Strategically prioritize, coordinate, and 
develop 3 codes: Griffin, Shift, and MPACT

• MPACT is the direct whole-core reactor physics code integrated into 
VERA for high-fidelity light water reactor simulation

• Griffin is a flexible MOOSE-based reactor physics application for 
multiphysics simulations of advanced reactor designs
• Range of mesh-based MG deterministic solvers
• On-the-fly cross section processing is integrated for both fast and thermal 

systems, including TRISO based systems
• Depletion/decay using built-in depletion solver
• Transient analysis using point kinetics, improved quasi static method, and spatial 

kinetics.
• MOOSE framework enables ease-of-coupling to other MOOSE-based codes

• Shift is a Monte Carlo radiation transport code designed to scale from 
supercomputers to laptops. 
• Continuous-energy nuclear data on exact geometry (CSG) 
• State-of-the-art methods for eigenvalue, shielding, depletion, and 

sensitivity/uncertainty on CPU/GPU systems
• Shift provides MG cross sections for subsequent multiphysics simulations with 

Griffin for all non-LWR reactor systems

NEAMS Reactor Physics technical area develops and deploys codes for 
modeling neutral particle transport and nuclide depletion/decay



Technology Specific Needs for Pebble Bed Reactors
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Technology Specific Needs for HTRs
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Technology Specific Needs for both

• Gamma heating of reflectors and steel components
• Fluence calculation in structures and components
• Shielding and detector response (source calculations)

Harris power 
plant adjoint flux 
for ex-core 
detector 
response from 
Shift

Shift WBN1 vessel fluence 
and normalized core flux 
over 15 cycles



Griffin Capabilities for PBRs and HTRs

Flexible high-performance radiation transport code 
designed to scale from laptops to supercomputers

State-of-the-art methods and algorithms
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Shift Capabilities for PBRs and HTRs

Flexible high-performance radiation transport code 
designed to scale from laptops to supercomputers

Shift GC-PBR depletion

State-of-the-art methods and algorithms
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Top RD&D Priorities - Griffin

• Griffin broad group cross section preparation FY25 (NO, AOO, DBA, BDBA)
• leakage correction

• neutron self-shielded XS for for HTRs

• neutron-gamma self-shielded XS for all PBRs and HTRs

• Deep penetration problems and detector response (NO, AOO)
• Solver improvements for SN + CMFD acceleration

• Adjoint flux generation for Shift (shielding)

• Improvements to low order methods (SPH, GET) FY25 (AOO, DBA, BDBA)
• Improve SPH convergence with reflector zones

• Determine SPH correction effects on the reactor kinetics solutions

NO – Normal Operation
AOO – Anticipated Oper. Occur.
DBA – Design Basis Accident
BDBA – Beyond DBA



Top RD&D Priorities - Shift

• Cross section preparation (NO, AOO, DBA, BDBA)
• Integrate microscopic cross section generation with overlay CSG tally

• Enable more accurate scattering matrix moments

• Generate a MOOSE-based workflow for FW-CADIS with Shift (NO, AOO)
• Enable Griffin-Shift calculations for detector response and deep penetration problems

• Compute weight windows from Griffin generated adjoint fluxes (biasing parameters)

• Shift multiphysics (NO, AOO, DBA, BDBA) 



Online Cross Section Generation Capability of 
Griffin



Introduction to Self-Shielding API (SSAPI)

• Purpose
• To perform fully heterogeneous transport calculation for flux solution without needing to 

generate cross sections by a user

• To generate cross sections in a downstream code for two-step approach

• Objective
• Determine region-dependent self-shielded multigroup cross

sections by performing self-shielding calculation.

• Method
• TRISO Dancoff factor for region-dependent shadowing effect

• Two-stage on-the-fly slowing down method

Shadowing effect in pin 2 < pin 15
= less shielded spectrum in pin 2 than pin 15

Pin 2

Pin 15

𝜎𝜎𝑔𝑔 =
∫𝐸𝐸𝑔𝑔
𝐸𝐸𝑔𝑔−1 𝜎𝜎 𝐸𝐸 𝜙𝜙 𝐸𝐸 𝑑𝑑𝑑𝑑

∫𝐸𝐸𝑔𝑔
𝐸𝐸𝑔𝑔−1 𝜙𝜙 𝐸𝐸 𝑑𝑑𝑑𝑑



SSAPI Capabilities

• TRISO double-heterogeneity treatment

• High temperature treatment (resonance up-scattering)

• On-the-fly Doppler broadening

• Multiphysics coupling (Doppler, coolant density)

• Macro- and micro-cross section edits for two-step procedure

• Support pebble-bed cross section generation with depletion

• Support shell-type fuel (HTTR annular compact, FHR pebble)
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Verification Efforts

• Accuracy (FY21 – 24 Accomplishments)
• Griffin uses the most advanced resonance self-shielding theory in terms of accuracy.

• Verified against Serpent for VHTR, HTTR, EMPIRE, gas- and salt-cooled PBRs.
• Generally eigenvalue error < 200 pcm, power error < 2%.

• Temperature reactivity coefficients < 5%

• Performance (FY24 Accomplishment)
• Optimization + New method

• Total speedup: > 300x

• Pebble-wise (fuel rod-wise) self-shielding calc.
~ 0.4 seconds per processor

• Supported by MPI parallelization

No Loss of Accuracy in Absorption Reaction Rate
from Speedup of > 300x



Coupled SSAPI, Transport, and Pebble Depletion
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Multi-pebble Model

• Issue in Average Pebble Model used by Legacy Tools
• Composition averaging leads to wrong self-shielding effect.

• Major impact: Overestimation of 240Pu capture up to +15%
→ Underestimation of eigenvalue up to -1.5%.

• Implementation of Multi-pebble Model in Griffin
• Pebble interactions are considered by coupled balance equations in different pebbles and 

coolant based on collision probability.

• Confirmed excellent agreement against
Serpent results.
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Streaming Effect for Gas-cooled PBR

• Presence of 40% Gas Region in a Pebble-bed
• Affects the mean neutron migration area.

• Conventional homogenization underestimates diffusion coefficient.
• Effect: power tilt and eigenvalue overestimation (up to a few %) 

• P. Benoist method for better diffusion coefficient
• Works for both transport and Diffusion calculations.

• Good agreement in 𝑘𝑘eff and power distribution
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Region Dependent Pebble-bed Porosity

• Region-wise Pebble Packing
• Less packed near the wall by -8% and more packed

in the inner side by +1.2% than nominal average

• Error Caused by Using Core-average Porosity
• Power error by the same error in pebble porosity

• Measure in Griffin
• User provides a txt file that contains pebble locations.

• Griffin calculates region-dependent porosity.

• Excellent agreement of power distribution
in the final solution (less than 2%).

Core-average pebble packing fraction = 0.6



Conclusion

• Developed an advanced on-the-fly cross section generation methods for GCR/FHR.
• Biggest advantage

• Elimination of user’s burden to generate cross sections, particularly more valuable for PBR 
depletion calculations.

• No interpolation error from tabulation approach, especially for complicated Multiphysics scenarios.

• Future works
• On-the-fly leakage correction for reducing computational burden without loss of accuracy.

• Support pebble-bed running-in calculation

• Coupled neutron and gamma transport

• Two-step process for core calculation with homogenized assembly

• Depletion for prismatic-type reactors




	NEAMS Reactor Physics HTGR/FHR Capabilities
	NEAMS Reactor Physics technical area develops and deploys codes for modeling neutral particle transport and nuclide depletion/decay
	Technology Specific Needs for Pebble Bed Reactors
	Technology Specific Needs for HTRs
	Technology Specific Needs for both
	Griffin Capabilities for PBRs and HTRs
	Shift Capabilities for PBRs and HTRs
	Top RD&D Priorities - Griffin
	Top RD&D Priorities - Shift
	Online Cross Section Generation Capability of Griffin
	Introduction to Self-Shielding API (SSAPI)
	SSAPI Capabilities
	Verification Efforts
	Coupled SSAPI, Transport, and Pebble Depletion
	Multi-pebble Model
	Streaming Effect for Gas-cooled PBR
	Region Dependent Pebble-bed Porosity
	Conclusion
	Slide Number 19

