Thermochimica-Transport Coupling for MSR Offgas Composition Estimation

William Gurecky (ORNL)

May 28, 2025

NEAMS Annual Review: Molten Salt Reactors

Target Application

Bateman equations coupled to reaction, advection, diffusion (RAD) produces stiff, linear dominate system.

$$\frac{\partial \mathbf{u}}{\partial t} = \underbrace{\mathbf{L}\mathbf{u}}_{Decay,Trans.} - \underbrace{\mathbf{v}\nabla\mathbf{u} + D\nabla^2\mathbf{u}}_{Adv.,Diffusion} \pm \underbrace{\mathbf{S}(\mathbf{u},t)}_{Phase.,Offgas.}$$

where ${\bf u}$ is a vector of the primary species. ${\bf L}$ contains entries spanning many orders of magnitude, from decay ${\lambda}$, transmutation $\phi\sigma_i$, etc.

MSR System

 ϕ : neutron flux, and σ : cross section.

Target Application

- Mole serves as a testbed for 0D/1D many-species transport methods.
- Includes Aux. kernels for Henry's gas constant and liquid—vapor phase transport.
- Other MOOSE codes (SAM) can utilize the Mole Aux. mass transfer and Henry's gas kernels ¹.
- Interface with Thermochimica (TC) to estimate liq. vapor equilibrium constants.
- Prototype new space and time discretization methods methods.

$$S(\mathbf{u},t) = S(u,t)_{HV} + S(u,t)_{TC} - S(u,t)_{offgas} + \dots$$

Henry's gas constant-based models² are presently used for high-volatile (HV) individual non-reactive primary isotopes, eg. ¹³⁵Xe, ⁹⁰Kr:

$$S(u,t)_{i,hv} = k_i a_b(\mathbf{u})(H_i R T c_{v,i} - c_{a,i})$$

 $a_b(\mathbf{u})$ is the interfacial surface area per volume, k_i is the mass transfer coefficient, and H_i is the gas constant for species *i. c* is *per phase* species concentrations,

$$c_{v,i} = u_{v,i}/\alpha$$
, $c_{a,i} = u_i/(1-\alpha)$

where u_i is the total vol. concentration and α is the void fraction.

U.S. DEPARTMENT | Office of of ENERGY | Nuclear Energy

$$S(\mathbf{u},t) = S(u,t)_{HV} + S(u,t)_{TC} - S(u,t)_{offgas} + \dots$$

Using Thermochimica (TC), obtain an additional source term to account for the liquid and vapor phase concentrations of secondary volatile chemical species (CsI, I_2 , ...). Take a simplified model to account for low volatile species:

$$S(u,t)_{i,TC} = x_i k_e a_b (H_e^{cc} \sum_{i \in e} c_{v,i} - \sum_{i \in e} c_{a,i}), \quad H_e^{cc} := \frac{c_{a,e}^{TC}}{c_{v,e}^{TC}} = \frac{u_{a,e}^{TC} \alpha}{u_{v,e}^{TC} (1-\alpha)}$$

with the per-element dimensionless gas constant H_e^{cc} determined by TC. This value determines the liq. vap. equilibrium value for element, e. k_e is an effective per-element mass transfer coefficient, x_i is the isotopic fraction.

Let *j* be a secondary species index: $\{c_{j=0}, c_{j=1}, ...\} = \{c_{Csl}, c_{l_2}, ...\}$

$$k_e = \sum_j w_j k_j$$

The weights, w_j are computed from stoichiometric fractions. Potential simplification: Set $K_{eff} = k_e a_b$ to a large, fixed constant. What is the end result and advantage?

- Drive the per-element liquid/vapor ratios to the TC equilibrium value.
- Stiff linear term(s) can be handled via CRAM-like methods.

$$S(u,t)_{i,TC} = x_i K_{eff}(H_e^{cc} \sum_{i \in e} c_{v,i} - \sum_{i \in e} c_{a,i})$$

OD Transient, Simplified 4 Species TC Coupling Test Case

Salt at t=0: LiF-BeF2-ZrF4-UF4 (65-29.1-5-0.9) + ¹³⁵I_l + ¹³⁵Cs_l

Figure 1: Left: $k_m a_b = 0.5$. Right: $k_m a_b = 5.0$. T=950K, P=1atm.

 4.53×10^{-9} mol/cc IG.

	1
Species	mol frc.
I ₂	0.966
I	3.32×10^{-2}
UF ₅	1.91×10^{-4}
ZrF ₄	1.06×10^{-5}
BeF ₂	9.82×10^{-6}
CsZrF ₅	4.11×10^{-13}
CsI	4.14×10^{-14}

TC ideal gas phase composition at 20s.

1D Nonlinear RAD, MSR, 38-species

$$\frac{\partial \mathbf{u}}{\partial t} = \underbrace{\frac{\mathbf{L}\mathbf{u}}{\mathbf{Decay,Trans.}}}_{\mathbf{Decay,Trans.}} - \underbrace{\frac{(1/A)(\nabla(Av\mathbf{u}) + D\nabla \cdot (A\nabla\mathbf{u}))}{Adv.,Diffusion}}_{\mathbf{Liq} \to vap.} \pm \underbrace{\frac{S(\mathbf{u},t)}{Iiq \to vap.}}_{\mathbf{liq} \to vap.}$$

$$\mathbf{RX} \qquad \mathbf{Pipe} \qquad \mathbf{Gas} \ \mathbf{Rem.}$$

- Track 38 primary species.
- Preliminary, One Way TC coupling (no feedback).
- Physics Included: Adv., Diff., Bateman, high-vol. liquid-gas transfer, gas removal, fission, n-capture. Placeholder reactor parameters and geometry.
- 3nd order FEM Gauss-Lobatto. Periodic BCs. Nonconstant pipe diameter.
- $v_{RX} = 0.2 \text{ m/s}$, $\Delta t = 2.0(\text{s})$. $t_f = 86400 \text{ (s)}$. Loop length 5(m).

Nonlinear RAD, MSR, 38-species. Void Frac.

Figure 2: Left: Gas TC species partial pressures, t = 200(s). Right: Void Frac. profile.

Questions

Appendix

Nonlinear RAD, MSR, 38-species. Jacobian Eigs.

Figure 3: Scaled Eigs of Jacobian at t = 86400(s). CFL: 156.

$$S(\mathbf{u},t) = S(u,t)_{HV} + S(u,t)_{TC} - S(u,t)_{offgas} + \dots$$

The offgas sink term is estimated by:

$$S(u,t)_{offgas,i} = \frac{k_i v_b A_b u_{v,i}}{V_{cell}}$$

where v_b is the bubble rise velocity, carrying vapor primary species with concentrations $c_{v,i}$, and A_b is the free-surface area, k_i is a dimensionless constant.

